
Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

28

Handling User Input

2 Handling User Input
Introduction

In this chapter we are going to learn about the first practical step towards building a complete computer
game, which is reading user input. Computer games, regardless of their genre and mechanics, must have
a form of user input; because interacting with the player is crucial in any digital game. We are going to
learn about different techniques of reading and handling user input, and our focus will be on the scripts
that react appropriately to this input in the scene.

After completing this chapter, you are expected to:

 - Read keyboard input
 - Implement platformer games input system
 - Read mouse input
 - Implement mouse look and develop first person input system
 - Implement third person input system
 - Implement controls of car racing games
 - Implement controls of flight simulation games

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

29

Handling User Input

2.1 Reading keyboard input

The keyboard is probably the most important input device in PC systems. Almost all PC games depend
on number of keyboard keys that perform basic functions. Most commercial games give the player the
ability to change key mapping to customize the controls for his needs.

Unity allows us to read keyboard input by using two methods. The first method is to read the key code
directly, by telling you that the player is currently holding, for example, A or Z key. The other method is
to use Unity’s input manager to bind the keys with commands you define, so that you can later change
the mapping between keys and commands. I am going to cover the first method only in this book, since
the vision of the book is to be as general as possible and avoid Unity-specific functions as possible. This
should make the book more useful for developers who use other engines.

To learn how to to read input, let’s create a new scene in our project or create a whole new project. What
we need now is a scene that contains the camera in its original position (0, 0, -10), in addition to a cube
in the middle of the scene as in Illustration 16.

Illustration 16: A simple scene to demonstrate reading keyboard input

After creating the scene, create a new script in scripts sub folder that we dedicated for script files, and
name it KeyboardMovement. Let’s say that we want to move the cube in the four directions: up, down, left,
and right depending on which keyboard arrow key the player is pressing. Listing 4 shows the required
code to implement such functionality. All you have to do is to add the script to the cube and start the
game to move it using the keyboard arrow keys.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

30

Handling User Input

1. using UnityEngine;

2. using System.Collections;

3.

4. public class KeyboardMovement : MonoBehaviour {

5.

6.		 public	float	speed	=	10;
7.

8. // Use this for initialization

9. void Start () {

10.

11. }

12.

13. // Update is called once per frame

14. void Update () {

15. //Check up

16. if(Input.GetKey(KeyCode.UpArrow)){

17. transform.Translate(0, speed * Time.deltaTime, 0);

18. }

19. //Check down

20. if(Input.GetKey(KeyCode.DownArrow)){

21. transform.Translate(0, -speed * Time.deltaTime, 0);

22. }

23. //Check right

24. if(Input.GetKey(KeyCode.RightArrow)){

25. transform.Translate(speed * Time.deltaTime, 0, 0);

26. }

27. //Check left

28. if(Input.GetKey (KeyCode.LeftArrow)){

29. transform.Translate(-speed * Time.deltaTime, 0, 0);

30. }

31. }

32. }

Listing 4: A simple script that interprets presses on the keyboard arrow keys into movement

As we see in Listing 4, player input reading is a continuous process as long as the game is running.
Therefore, we need to handle the input inside Update() function. In lines 16, 20, 24, and 28; we call
Input.GetKey() and pass to it a key code to check its state. The KeyCode enumerator includes codes for
all keyboard keys, so we only have to choose the appropriate one. Input.GetKey() returns true if the
given key is pressed during the current frame, and returns false otherwise. By using if keyword, we build
conditional statements that bind movement to certain direction by a specific key on the keyboard. Here
we use again transform.Translate() to move the object on x and y axes, and use positive and negative
values of speed to specify the movement direction.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

31

Handling User Input

Sometimes we need to read the key only once instead of the repetitive reading in every frame. For
instance, the jump action in platformer games usually requires the player to release the jump button/
key and press it again to make a new jump, instead of jumping continuously by simply keeping the jump
key pressed. For similar scenarios, we use Input.GetKeyDown(), which gives us true only at the first time
the player presses the key. After that, it keeps returning false until the key is released and pressed again.
You can examine the difference between Input.GetKey() and Input.GetKeyDown() by replacing one by
another in Listing 4.

If you are not familiar with programming, and hence do not really recognize the difference between
using if alone and else if; I will explain this with the help of Listing 5. By using only if, we allow each key
to be scanned independently, which in turn allows all keystrokes to affect the object simultaneously. So
if the player holds both up arrow and right arrow, the object will move on both x and y axes resulting
in diagonal displacement. However, if the player presses up and down arrows together, they will cancel
each other effects and the object isn’t going to move at all. Here where else if comes into play. If we want
to prevent reading two opposite directions at the same time, we use else if and hence give the priority
to the key that has the first condition check.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

32

Handling User Input

16. //Try to read the up arrow, if it is not pressed try with the down arrow

17. if(Input.GetKey(KeyCode.UpArrow)){

18. transform.Translate(0, speed * Time.deltaTime, 0);

19. } else if(Input.GetKey(KeyCode.DownArrow)){

20. transform.Translate(0, -speed * Time.deltaTime, 0);

21. }

22.

23. //Try to read the right arrow, if it is not pressed try with the left arrow

24. if(Input.GetKey(KeyCode.RightArrow)){

25. transform.Translate(speed * Time.deltaTime, 0, 0);

26. } else if(Input.GetKey (KeyCode.LeftArrow)){

27. transform.Translate(-speed * Time.deltaTime, 0, 0);

28. }

Listing 5: Using else if to restrict the reading on one key and give priority to specific keys over others

All of what we have seen with arrows applies to all other keys as well. All you have to do is to pick the
key you need from KeyCode enumerator. You can see the result in scene2 in the accompanying project.

2.2 Implementing platformer input system

Platformer games are probably the most famous 2D games available, and they also have some known
titles among 3D games as well. Games such as Super Mario and Castlevania belong to this category of
games, in addition to known modern game titles such as Braid, FEZ, and Super Meat Boy. These games
depend primarily on jump mechanic to move between platforms, defeat enemies, and solve puzzles.
They might also have other mechanics such as shooting.

Since we are now able to read user input from the keyboard, we can make a basic input system based on
the arrow keys for movement and space bar for jumping. Since we have not yet learned how to detect
collisions between objects, we are not able to find out whether the player character is currently standing
on a platform or it should fall down. Therefore, we are going to consider that the character is standing
on the ground as long as its position has specific y value.

In the previous example, we have seen how to implement movement to right and left. So, we are going
now to implement the desired system to have gravity, and hence jumping and falling. We need also that
the camera follows the player character as this character moves. Before starting to write the platformer
input system scripts, we have to construct a basic scene to implement our work in it. Build a scene that
is similar to Illustration 17 by making use of basic shapes, relations between objects, and appropriate
textures. Notice that I have used Quad basic shape to make the 2D player character.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

33

Handling User Input

Illustration 17: The scene we are going to use to implement the platformer input system

The purpose of using the background you see in Illustration 17 is to be able to see the camera movement,
specifically when we implement player character tracking function. Notice that the scene extends
horizontally along the x axis, while its depth along the z axis is a bit smaller. The reason is obvious:
platformer games depend mostly on horizontal movement. You can build something simpler if you find
this one tedious to construct yourself, even I encourage you to try anyway; so you get more comfortable
with scene construction details such as adjustment of texture tiling values to cope with object scaling.

Let’s now write the script that controls the character. This script has several tasks to do: firstly, it ensures
the application of gravity by dragging the object towards the ground if its y position is higher than the
ground level. Secondly, it must not allow the character to sink below the ground level. Finally, and most
importantly, it should allow the player to control the character by using keyboard keys. Listing 6 shows
PlatformerControl script, which performs all of the above-mentioned tasks.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

34

Handling User Input

1. using UnityEngine;

2. using System.Collections;

3.

4. public class PlatformerControl : MonoBehaviour {

5.

6. //Vertical speed at the beginning of jump

7.	 public	float	jumpSpeed	=	7;
8.

9. //Falling speed

10.	 public	float	gravity	=	9.8f;
11.

12. //Horizontal movement speed

13.	 public	float	movementSpeed	=	5;
14.

15. //Storing player velocity for movement

16. private Vector2 speed;

17.

18. // Use this for initialization

19. void Start () {

20.

21. }

22.

23. // Update is called once per frame

24. void Update () {

25. //Read direction input

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

35

Handling User Input

26. if(Input.GetKey(KeyCode.RightArrow)){

27.	 speed.x	=	movementSpeed;
28. } else if(Input.GetKey(KeyCode.LeftArrow)){

29.	 	speed.x	=	-movementSpeed;
30. } else {

31.	 speed.x	=	0;
32. }

33.

34. //Read jump input

35. if(Input.GetKeyDown(KeyCode.Space)){

36. //Apply jump only if player is on ground

37.	 if(transform.position.y	==	0.5f){

38. speed.y	=	jumpSpeed;
39. }

40. }

41.

42. //Move the character

43. transform.Translate(speed.x * Time.deltaTime,

44. speed.y * Time.deltaTime,

45. 0);

46.

47. //Apply gravity to velocity

48. if(transform.position.y > 0.5f){

49.	 speed.y	=	speed.y	–	gravity	*	Time.deltaTime;
50. } else {

51.	 speed.y	=	0;
52.	 Vector3	newPosition	=	transform.position;
53.	 newPosition.y	=	0.5f;
54.	 transform.position	=	newPosition;
55. }

56. }

57. }

Listing 6: The Script that implements the platformer input system

The first note regarding this script is its relative length and complexity, compared with what we have
been dealing with so far. This is reasonable, since this is our first script that does some real game stuff,
and there is much more yet to come! You might now have had an idea about amount of work required
to make a real game, regardless of how small and simple it might be.

Let’s now dive into the details of the script and discuss them. We have three speed variables that control
the speed of the character movement. The first speed is jumpSpeed, by jump speed we mean the vertical
speed upwards at the moment the character leaves the ground. This speed starts to decrease with time
until it reaches zero. After that, it starts to degrade below zero, so the object begins to fall down again
because of the gravity. The second speed is gravity, which represents how fast the vertical speed of the
character decreases when it is in the air. We are going to discuss the relation between these two speeds
in a moment.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

36

Handling User Input

The third speed is the horizontal speed defined by movementSpeed variable, which is the speed of the
character horizontal movement towards left and right. When we combine these three speeds together,
they give us a resultant velocity that has two components on x and y axes. That’s why we define speed,
which is a variable of type Vector2 (a two dimensional vector), in order to store the values of these two
components and use them in each update iteration. We need to keep the value of the velocity stored
between the frames, which is specially important for the vertical speed. The vertical speed changes during
the time between the frames, and hence we keep its value to be able to update the next frame correctly.

The first step in Update() function, which lies between lines 26 and 32, is known to us. It simply reads
keyboard input and interprets it as horizontal movement. As you can see, the right arrow gives us the
positive value of movementSpeed, while left arrow gives us the negative value of the same variable. If the
player is not pressing any of these keys, we set the value of x member of speed to zero. We use the member
x of speed variable to keep horizontal speed value to use it later for final displacement of the object.

The second step in update (lines 35 through 40) is to read the space bar and implement the jumping if
possible. Notice here that we use GetKeyDown() in order to prevent consecutive jumping by keeping
the space bar down, and force the player to release space and press it again to re-jump. Additionally, we
do not allow the character to jump unless it is standing on the ground at the moment the player presses
space. In our scene, the original y position of the character is 0.5, so we take it as the ground reference to
determine whether or not the character is grounded. Once we make sure that the character is grounded,
we change y member of speed to the value of jumpSpeed.

The third step is in lines 43 through 45, in which we perform the actual displacement of the object based
on the values of speed we have computed in the previous steps. We use transform.Translate() to perform
displacement based on the values stored in speed. The displacement takes place on x and y axes, and we
multiply by Time.deltaTime as usual, to work out the distance from the speed values we have.

After moving the object, we have one step remaining. This step is to compute the new vertical speed
of the object. As described earlier, the y value of 0.5 in the character position means that the character
is standing on the ground. If this is not the case (lines 48 through 50), it means that the character is
currently in the air; which requires us to reduce its vertical speed using gravity. This reduction, as you
can see, is equal to gravity multiplied by delta time from the previous frame. Since the vertical speed
gets smaller as the time passes, the vertical displacement in the next frame will be less than what it is in
the current frame. This holds until, at some point, the vertical speed reaches zero. This can be observed
by seeing that character ascendance gets slower and slower until the object stops in the air, after that it
starts to fall with a small speed and gets faster with the time.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

37

Handling User Input

The other part of the last step (lines 50 through 55) applies in cases other than jumping (being in air).
Here we have two possibilities: the y position of the object is either 0.5, or less than that. Values less
than 0.5 can be caused by gravity displacement in the previous step. Since displacement depends on
delta time, which we cannot control, we cannot guarantee the absence of values less than 0.5 (remember
that we still have no collision detection, so the ground will not prevent the character from sinking). To
be in the safe side, we reset the vertical speed to zero and make sure that our object y position is 0.5.

It is important to mention that Unity does not allow us to modify position members directly, so you cannot simply use
the statement transform.position.y = 0.5;. Alternatively you have to store the value of the position in a new variable of
type Vector3, and then modify the members through that new variable. Finally, you set the value of transform.position
to the value of the modified vector. This is exactly what we do in lines 52 through 54 in Listing 6

When you are done building the scene as in Illustration 17 (or any similar scene, as long as it has objects
in the background to recognize movement), and add PlatformerControl script to the player character,
you are ready to run the game and test movement and jumping. Illustration 18 shows a screen shot from
the game during jump.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

38

Handling User Input

Illustration 18: Implementing the platformer input system and performing jump

What we have to do now is to make the camera follow the player character as it moves. Up to now, it
is possible that the character leaves the field of view of the camera, which will make it invisible and
make your game impossible to play. We can implement this function in two different ways: the first
and the easiest method is to add the camera as a child to the character, so it follows the character as it
moves horizontally and vertically. In this case, the relative position of the character inside game window
will remain constant. The second and more advanced implementation (which we are going to use) is
to write a script that allows the camera to follow the character, and gives the player a sort of margin
in which he can move the character before the camera starts to follow it. This margin is going to be
dynamically modifiable.

Let’s discuss the implementation in detail. This method promises to have a control system that looks
more professional and is more fun for the player to deal with. At the beginning, we have to have the
character at the center of the camera view, then it starts to move, say, to the right. When the character
is at a specific relative distance from the camera on the x axis, the camera begins to move right to follow
it. Listing 7 shows the character following mechanism. So let’s create a new script called PlayerTracking
and attach it to our camera.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

39

Handling User Input

1. using UnityEngine;

2. using System.Collections;

3.

4. public class PlayerTracking : MonoBehaviour {

5. //We need a reference to character transform

6. public Transform playerCharacter;

7. //Max movement distance to right before camera start following

8.	 public	float	maxDistanceRight	=	1.5f;
9. //Max movement distance to left before camera start following

10.	 public	float	maxDistanceLeft	=	1.5f;
11. //Max movement distance to up before camera start following

12.	 public	float	maxDistanceUp	=	1.0f;
13. //Max movement distance to down before camera start following

14.	 public	float	maxDistanceDown	=	1.0f;
15.

16. // Use this for initialization

17. void Start () {

18.

19. }

20.

21. // Here we use LateUpdate instead of Update

22. void LateUpdate () {

23. //Current position of the camera

24.	 Vector3	camPos	=	transform.position;
25. //Current position of the character

26.	 Vector3	playerPos	=	playerCharacter.position;
27.

28. //Check if the camera is far behind the character

29.	 if(playerPos.x	–	camPos.x	>	maxDistanceRight){
30.	 camPos.x	=	playerPos.x	–	maxDistanceRight;
31. }

32. //Check if camera far front of player character

33.	 else	if(camPos.x	–	playerPos.x	>	maxDistanceLeft){
34.	 camPos.x	=	playerPos.x	+	maxDistanceLeft;
35. }

36.

37. //Check if the camera is far below the character

38.	 if(playerPos.y	–	camPos.y	>	maxDistanceUp){
39.	 camPos.y	=	playerPos.y	–	maxDistanceUp;
40. }

41. //Check if the camera is far above the character

42.	 else	if(camPos.y	–	playerPos.y	>	maxDistanceDown){
43.	 camPos.y	=	playerPos.y	+	maxDistanceDown;
44. }

45. //Set the position of the camera

46.	 transform.position	=	camPos;
47. }

48. }

Listing 7: The character tracking mechanism for the camera

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

40

Handling User Input

There is a bunch of new things in this script that need to be discussed in detail. First of them is the
variable called playerCharacter which has the type Transform. Until now we have been using variables that
store numbers, and were able to use input fields in the inspector to set their values using the keyboard.

Due to the nature of this script, it is required to deal with more than one object. On one hand, we attach
this script to the camera to control its movement. And, on the other hand, the script needs to deal with
the character; in order to update the position of the camera according to the position of the character.
That’s why we have defined playerCharacter variable, which is going to be used to reference the object of
the character, specifically the Transform component of that object. We need now is to bind this variable
to the character object, so that the script knows the position of the character when the game runs.
Illustration 19 shows how to bind a game object from the scene to a variable in a script.

To bind a game object from the scene to a variable in a script, drag the object from the hierarchy inside the filed of that
variable in the inspector. So to bind the character object with playerCharacter variable in PlayerTracking script, first select
the camera from the hierarchy, and attach the script to the camera if it has not yet been attached. Once the script is
attached, you can see the field “Player Character” in the inspector. All you have to do now is to drag the character game
object inside that field as in Illustration 19.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

41

Handling User Input

Illustration 19: Binding a game object from the scene with a variable in a script

In addition to playerCharacter variable, we have defined four variables to shape the frame in which the
player character can move without moving the camera. These variables are named after positions relative
to the camera. We have therefore maxDistanceRight and maxDistanceLeft to define maximum allowed
distances on the x axis. So if the character is to the right of the camera, and the horizontal distance
between the character and the camera on x axis is greater than maxDistanceRight, the camera will
move right in order to prevent this distance from exceeding the defined limit. The same thing applies
to maxDistanceUp and maxDistanceDown on the y axis. If we draw these limits as straight lines, they
form a rectangle around the player character as shown in Illustration 20.

Illustration 20: The area in which the character can move without moving the camera

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

42

Handling User Input

Once these distances have been defined, we need to track the position of the character in each update
iteration to test if we should move the camera. First of all, notice that in line 22 we have called LateUpdate()
function instead of Update() which we used to use previously. These functions are both called once every
frame. It is guaranteed, however, that Unity will call Update() first from all scripts in the scene, then it
will go through all scripts again and call LateUpdate(). In other words, it is guaranteed that the code in
LateUpdate() is always executed after the code in Update() in any given update iteration.

Keep in mind that we have two scripts in the current scene: PlatformerControl which reads player input
and performs character movement, and PlayerTracking which allows the camera to follow the character.
Now we want to be sure that character movement completes before the camera moves. The easiest way to
do that is to update camera movement from LateUpdate() function. This ensures that character movement
is completed and the character is now in the new position, before the camera moves. Notice that if you
use Update() for PlayerTracking instead of LateUpdate(), you might be lucky to have Unity call Update()
from PlatformerControl first and then from PlayerTracking, hence you get a correct behavior. However,
in programming we do not let luck control anything, and we always count for the worst case scenario.

As you see in lines 24 and 26, we start by storing the positions of both the camera and the character, in
order to perform the required computations between them. After that we start to check for possible cases
on the x axis. This checking takes place in lines 30 through 36. Keeping in mind that the positive direction
of the x axis is to the right, we subtract x position of the camera from the x position of the character. If the
result is greater than right limit defined by maxDistanceRight, we move the camera to follow the character.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

43

Handling User Input

One important issue here is: how to compute the new x position of the camera? The best way to answer
the question is by an example: suppose that the maximum distance to the right is 1.5 as defined in line
8, and the character moves until it reaches the x position of 1.6, while the x position of the camera is
still 0. Now if we compute the difference between the two positions, it is going to be 1.6 – 0 = 1.6, which
is greater than the allowed value of 1.5. Therefore, we need to move the camera to the right. We need
also to keep the character 1.5 units to the right of the camera, to allow the camera to move along and
follow the character. In order to get the correct new position for the camera, we subtract the maximum
allowed value from the current position of the character, which equals to 1.6 – 1.5 = 0.1. So 0.1 is the
new x position we need to move the camera to. Camera movement is performed in line 30.

The same method applies to the case in which the character is to the left of the camera. The difference is
that we add the value of maxDistanceLeft to the current position of the character to get the new position
for the camera, like in line 34. The same applies also to the y movement of the character, along with the
values of maxDistanceUp and maxDistanceDown.

The final step is to assign the new position we have computed in camPos variable to the position
value of the camera transform, which we do in line 46. You can see the final result in scene3 in the
accompanying project.

2.3 Reading mouse input

After we have learned how to read and use keyboard input, let’s now move to the other major input device
in PC games: the mouse. If you are interested in computer games, you definitely know the importance
of this device for these games. For instance, it is a major input device in shooting games, and it is also
used to give tons of commands in real-time strategy games. Additionally, it is the major input device
when it comes to game menus and the user interface in general.

What is interesting for us in this section is reading two-dimensional movement of the mouse, in addition
to various mouse buttons and mouse wheel scrolling. Let’s begin with a new simple scene that has one
object: a sphere located at the origin. We will add a script to this sphere that reads mouse movement
and interprets it to displacement of the sphere on x and y axes. The script will also read the clicks on
mouse buttons and use them to change the color of the sphere. Finally, mouse wheel scrolling will be
used to change the scale of the sphere. Before we begin, it is advised that you position the camera in
a relatively far distance from the sphere (0, 0, -70 for example), which should prevent the sphere from
leaving the field of view easily. Listing 8 shows the code required to read mouse input and interpret it
to achieve the desired behavior.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

44

Handling User Input

1. using UnityEngine;

2. using System.Collections;

3.

4. public class MouseMovement : MonoBehaviour {

5.

6. //Speed of object movement

7.	 public	float	movementSpeed	=	5;
8.

9. //Colors

10.	 public	Color	left	=	Color.red;
11.	 public	Color	right	=	Color.green;
12.	 public	Color	middle	=	Color.blue;
13.

14. //increment/decrement of scale at each mouse scroll

15.	 public	float	scaleFactor	=	1;
16.

17. //Mouse position in the previous frame,

18. //important to measure mouse displacement

19. Vector3 lastMousePosition;

20.

21. void Start () {

22.	 //To	make	displacement	=	0	at	the	beginning
23.	 lastMousePosition	=	Input.mousePosition;
24. }

25.

26. void Update () {

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

45

Handling User Input

27.

28. if(Input.GetMouseButton(0)){

29. //Left button

30.	 renderer.material.color	=	left;
31. } else if(Input.GetMouseButton(1)){

32. //Right button

33.	 renderer.material.color	=	right;
34. } else if(Input.GetMouseButton(2)){

35. //Middle button

36.	 renderer.material.color	=	middle;
37. }

38.

39. //Calculate mouse displacement

40.	 	Vector3	mouseDelta	=	Input.mousePosition	–	lastMousePosition;
41. transform.Translate(

42. movementSpeed * Time.deltaTime * mouseDelta.x,

43. movementSpeed * Time.deltaTime * mouseDelta.y, 0);

44.

45. //Update the last position for the next frame

46.	 lastMousePosition	=	Input.mousePosition;
47. //Reading wheel scrolling

48.	 float	wheel	=	Input.GetAxis("Mouse	ScrollWheel");
49. if(wheel > 0){

50. //Wheel has been rotated upwards

51.	 transform.localScale	+=	Vector3.one	*	scaleFactor;
52. } else if(wheel < 0){

53. //Wheel has been rotated downwards

54.	 transform.localScale	-=	Vector3.one	*	scaleFactor;
55. }

56. }

57. }

Listing 8: Reading mouse input

Let’s discuss the important parts of this script. First of all we have the movement speed in line 7, in
addition to three variables of type Color in lines 10 through 12. These variables are able to store a specific
color, which can be either picked from the color palette in the inspector, or set directly from code just
like what we do here. In line 15, we define lastMousePosition variable, which is going to hold the last
position of mouse pointer and allow us to compute mouse displacement every frame update. At the
beginning of the execution (line 23), we set lastMousePosition to the current position of the mouse,
which we get from Input.mousePosition. By doing this, we guarantee that the displacement is going to
be zero when the first frame is rendered.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

46

Handling User Input

After that we go into the update loop and start to read inputs sequentially. We begin with lines 28
through 37, in which we check whether the player is pressing one of the three mouse buttons. Input.
GetMouseButton() function does the job for us, and all we have to do is to call it and pass to it the
number of the mouse button we want to check. In the default mouse setup these numbers are 0 for
the left button, 1 for the right button, and 2 for the middle button. What we do in these lines is simply
changing the material color of the sphere based on which button is pressed.

In lines 40 through 43 we compute displacement distance of the cursor by subtracting its previous position
from its current position. We then move the object on x and y axes by the computed displacement
multiplied by movement speed. Since the mouse pointer position is by nature two dimensional, we do
not include the z member of mouse position in our computations. After that, in line 46, we update the
last position of the mouse and make it equal to the mouse position in the current frame. By doing this,
we become ready to compute mouse displacement in the coming frame.

The last step is to read the mouse scroll wheel, which is performed through Input.GetAxis(). We pass
to this function the name of the axis we want to read. Axes names can be set up in a custom window
that we might discuss later. However, we have already an axis named Mouse ScrollWheel defined for us
by Unity, so all we have to do is to pass that name to Input.GetAxis(). If there is no wheel input, the
returned value is zero. On the other hand, scrolling up will return 1 and scrolling down will return -1.
Based on the return value, we add or subtract a vector of scale 1 from transform.localScale vector of the
object. The complete scene is available in scene4 in the accompanying project.

2.4 Implementing first person shooter input system

First person shooters are among the most popular 3D games. Many known titles belong to this category,
such as Call of Duty series, Doom series, and Half-Life. These games place the camera at the position
of the player face and observe the game world through his eyes. They mainly use mouse to control the
looking direction, and WSAD keys to move in the four directions.

In this section we are going to implement this kind of input systems using what we have learned so far.
First of all we need to know how to create a player character for such kind of games. Since the character
isn’t going to be visible, it is enough for us to use a cylinder with a length of two meters, or two units in
Unity editor. In fact, the default length of the cylinder object in Unity is 2 units, so all we have to do is
to add a cylinder with the default scale. Since the camera should be placed at the position of the player
eyes, we have to add it as a child to this cylinder. This makes the camera move and rotate with cylinder.
We have also to add a ground and maybe few objects that construct a scene in which we can navigate,
as in Illustration 21.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

47

Handling User Input

Illustration 21: The cylinder object used to create the first person input system

Notice that the camera is added as a child to the cylinder and it resides at the top of the cylinder
upper surface. The mouse look mechanism is going to be as follows: when the player moves the mouse
horizontally, we rotate the cylinder around the y axis leading to right or left rotation of the cylinder,
depending on the direction of horizontal displacement of the mouse. On the other hand, when the player
moves the mouse vertically, only the camera will be turned towards up or down. This means that we
have two independent axes for horizontal and vertical rotations, which leads to a system similar to the
tripod of the photography camera.

Regarding the movement, pressing W key moves the character forward in the direction the player
currently faces (i.e. positive direction of the local z axis of the cylinder object). Similarly, pressing S key
moves the character in the opposite of the direction it faces. This also applies to strafing right and left,
where pressing D will move the character in the positive direction of its local x axis, and pressing A will
move it in the opposite direction. Illustration explains cylinder reactions to user input.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

48

Handling User Input

Illustration 22: Effect of the player input on the movement and the rotation of the character and the camera

If you compare this concept with the human body, you might say that the movement keys move the
whole body in the four directions, while the horizontal mouse displacement rotates the body around
itself on its vertical axis. On the other hand, the vertical mouse displacement moves the head only to
look up and down.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

49

Handling User Input

One important note to mention before moving to the code. We must remember to somehow “lock” the
vertical rotation of the camera towards up and down. This means that we set a maximum angle between
the camera front vector and the horizon (60 degrees for example), in order to prevent the camera from
rotating 180 degrees and hence becoming up side down. Back to our human body example, you see that
the rotation of the human head is limited.

To implement the first person input system, we will use a script called FirstPersonControl, which is
shown in Listing 9. This script must be attached to the cylinder, which in turn has the camera as a child
as shown in Illustration 21.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class FirstPersonControl : MonoBehaviour {

5.

6. //Vertical speed at the beginning of jump

7.	 public	float	jumpSpeed	=	0.25f;
8.

9. //Falling speed

10.	 public	float	gravity	=	0.5f;
11.

12. //Horizontal movement speed

13.	 public	float	movementSpeed	=	15;

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

50

Handling User Input

14.

15. //Mouse look speed on both axis

16.	 public	float	horizontalMouseSpeed	=	0.9f;
17.	 public	float	verticalMouseSpeed	=	0.5f;
18.

19. //Max allowed cam vertical angle

20.	 public	float	maxVerticalAngle	=	60;
21.

22. //Storing player velocity for movement

23. private Vector3 speed;

24.

25. //Mouse position in previous frame,

26. //important to measure mouse displacement

27. private Vector3 lastMousePosition;

28.

29. //Store camera transform

30. private Transform camera;

31.

32. void Start () {

33.	 lastMousePosition	=	Input.mousePosition;
34. //Find camera object in children

35.	 camera	=	transform.FindChild("Main	Camera");
36. }

37.

38. void Update () {

39. //Step 1: rotate cylinder around global Y

40. //axis based on horizontal mouse displacement

41.	 	Vector3	mouseDelta	=	Input.mousePosition	–	lastMousePosition;
42.

43. transform.RotateAround(

44. Vector3.up, //Rotation axis

45. mouseDelta.x *

46. horizontalMouseSpeed *

47. Time.deltaTime);//Angle

48.

49. //Get current vertical camera rotation

50.	 float	currentRotation	=	camera.localRotation.eulerAngles.x;
51.

52. //Convert vertical camera rotation from range [0, 360]

53. //to range [-180, 180]

54. if(currentRotation > 180){

55.	 currentRotation	=	currentRotation	–	360;
56. }

57.

58. //Calculate rotation amout for current frame

59.	 float	ang	=
60. -mouseDelta.y * verticalMouseSpeed * Time.deltaTime;

61.

62. //Step 2: rotate camera around it’s local X

63. //axis based on vertical mouse displacement

64. //First check allowed limits

65.	 	if((ang	<	0	&&	ang	+	currentRotation	>	-maxVerticalAngle)	||
66.	 	(ang	>	0	&&	ang	+	currentRotation	<	maxVerticalAngle)){
67. camera.RotateAround(camera.right, ang);

68. }

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

51

Handling User Input

69.

70. //Update last mouse position for next frame

71.	 lastMousePosition	=	Input.mousePosition;
72.

73. //Step 3: update movement

74. if(Input.GetKey(KeyCode.A)){

75. //Move left

76.	 speed.x	=	-movementSpeed	*	Time.deltaTime;
77. } else if(Input.GetKey(KeyCode.D)){

78. //Move right

79.	 speed.x	=	movementSpeed	*	Time.deltaTime;
80. } else {

81.	 speed.x	=	0;
82. }

83.

84. if(Input.GetKey(KeyCode.W)){

85. //Move forward

86.	 speed.z	=	movementSpeed	*	Time.deltaTime;
87. } else if(Input.GetKey(KeyCode.S)){

88. //Move backwards

89.	 speed.z	=	-movementSpeed	*	Time.deltaTime;
90. } else {

91.	 speed.z	=	0;
92. }

93.

94. //Read jump input

95. if(Input.GetKeyDown(KeyCode.Space)){

96. //Apply jump only if player is on ground

97.	 if(transform.position.y	==	1.0f){
98.	 		 speed.y	=	jumpSpeed;
99. }

100. }

101.

102. //Move the character

103. transform.Translate(speed);

104.

105. //Apply gravity to velocity

106. if(transform.position.y > 1.0f){

107.	 speed.y	=	speed.y	–	gravity	*	Time.deltaTime;
108. } else {

109.	 speed.y	=	0;
110.	 Vector3	newPosition	=	transform.position;
111.	 newPosition.y	=	1.0f;
112.	 transform.position	=	newPosition;
113. }

114. }

115. }

Listing 9: Implementing the first person input system

As you can see, some parts of the code are familiar since we have already dealt with them. You can refer
to Listing 6 in page 26 to read the discussion over parts such as jumping.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

52

Handling User Input

Now let’s get into the discussion of the first person input system. After declaring some variables we call
the function transform.FindChild() in line 35. What does this function do is searching for the object
with the provided name. This search is performed among the children of the current object only. In this
case, we have passed the name Main Camera, which is the default name of the camera in Unity. Since
we have already added the camera as a child to the cylinder, this function is going to find the camera
and return it to be stored in camera variable. We are going to deal with this variable later on.

In the first step in lines 43 through 47, we call the function transform.RotateAround(), and its job is to
rotate the object around a specific axis. Therefore, we provide a rotation axis and an angle. As for the axis
it is Vector3.up, which is the positive direction of the global y axis that goes up. Since this is a vertical
axis, the resulting rotation is going to be horizontal towards left or right. The rotation angle is a product
of three values: first value is mouseDelta.x, which is the horizontal mouse displacement since the last
frame. This value is positive when the mouse moves from left to right, which results in clockwise rotation
as in part (b) in Illustration 22, and counter-clockwise rotation when the mouse moves in the opposite
direction. The second value, horizontalMouseSpeed, represents the rotation speed. In most games, this
value can be customized by the player in order to match the speed of mouse movement he is used to.
The last value is Time.deltaTime, we have been dealing with this value for a while, since we usually need
to compute the distance or angle from the speed.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

53

Handling User Input

In line 50, we compute current camera rotation around its local x axis. This value is always between 0 and
360, and it increases as the camera rotates clockwise. In other words, this value will increase when the
camera looks down as in part (c) in Illustration 22. In lines 54 through 56, we convert this value to an
angle between 180 and -180 by converting angles greater than 180 to negative angles (for example, 190
becomes -170 and so on). We store this value in currentRotation to benefit from it later on in computing
the limits of camera rotation.

In lines 59 and 60, we compute the value of camera rotation for the current frame. This value consists
of -mouseDelta.y, verticalMouseSpeed, and Time.deltaTime, and it is computed in a way similar to the
one performed in a previous step to compute the cylinder rotation. The exception here is the use of
the negative value of mouse vertical displacement -mouseDelta.y. The justification of that is: mouse
movement upwards gives us a positive value for mouseDelta.y, and we need to convert it to a camera
rotation upwards, which is in fact a counter-clockwise rotation around the local x axis of the camera.
Therefore, the negative value results in the counter-clockwise rotation we need, and vice-versa for camera
rotation downwards. After computing the angle we store it in the variable ang.

After computing rotation magnitude, what we need is to rotate the camera around its local x axis by this
magnitude. Here we have three possibilities: first possibility is that the mouse did not move vertically,
which results in zero value for ang. In that case we don’t have to do anything. The second possibility
is that the mouse moved upwards, which means that ang value is negative and will result in a camera
rotation upwards. This is the case we check in line 65, to make sure that the resulting angle after
rotation (ang + currentRotation) is greater than the minimum allowed value for camera rotation which
is -maxVerticalAngle. The third and last possibility is that the mouse moved downwards, which gives
us positive value for ang. In this case we have to make sure that ang + currentRotation is less than than
maxVerticalAngle. This is what we do in line 66. If one of these conditions applies, we rotate the camera
around its local x axis using ang value we have just computed. This rotation is applied using transform.
RotateAround(), which we call in line 67.

In lines 74 through 92 we scan the inputs of the four direction arrows and add the appropriate direction
to the final speed. This input might be forward, backwards, right, or left. The rest of lines have already
been discussed in the platformer input system, so you can refer to the discussion in page 26. You can
also see the final result in scene5 in the accompanying project.

2.5 Implementing third person input system

Third person games include a collection of the most famous games, such as Tomb Rider, Hitman, Splinter
Cell, Max Payne, and many more. They are based on placing the camera behind the player character at
specific distance and height. Distance and height can change according to the play state, such as zooming
in when the character aims with a weapon, and zooming out when the character is running fast.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

54

Handling User Input

You will learn in this section how to implement this type of input systems. We will benefit from a number
of techniques we have learned so far, such as reading keyboard and mouse input, relations between
objects, and rotation functions such as transform.RotateArount(). There are various methods that can
relate the rotation of the camera to movement of the character. In World of Warcraft, for example, the
mouse is used mainly to interact with the objects in the environment. Therefore, character rotation is
performed using keyboard input, and camera rotation uses the right mouse button. In other games, such
as Hitman, mouse pointer is used for aiming, so the character looks always at the position of the mouse
pointer, and shooting is performed in that direction. In this latter case, the camera rotates automatically
to follow the direction where the character looks.

In this section, we are going to deal with a simple system that rotates the character based on horizontal
movement of the camera, in a manner similar to the one used in previous section for first person input
system. We will also move the camera up and down based on vertical mouse movement. It is important to
keep the camera always look at the character and follow it wherever it moves. We are going to implement
this by using object relations between the character and the camera. Finally, we are going to allow the
player to zoom the camera in and out using the mouse wheel. Let’s begin by creating a simple character
using basic shapes, it might look like the character in Illustration 23.

Illustration 23: A simple character we are going to use for the third person input system

After creating the character using the main body, which is a capsule object that has other objects (hands
and head) as children, we need to add the camera as a child to this object. This is necessary to make the
camera follow the character all the time. Next step is to add a script to the character object to control
its movement. We are going also to add another script for the camera. Let’s begin with the first script
ThirdPersonControl, the script that we add to to the character to respond to keyboard input (movement
and jumping). This script is shown in Listing 10.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

55

Handling User Input

1. using UnityEngine;

2. using System.Collections;

3.

4. public class ThirdPersonControl : MonoBehaviour {

5.

6. //Vertical speed at the beginning of a jump

7.	 public	float	jumpSpeed	=	1;
8.

9. //Falling speed

10.	 public	float	gravity	=	3;
11.

12. //Horizontal movement speed

13.	 public	float	movementSpeed	=	5;
14.

15. //Storing the player velocity for movement

16. private Vector3 speed;

17.

18. void Start () {

19.

20. }

21.

22. void Update () {

23.

24. //Update movement

25. if(Input.GetKey(KeyCode.A)){

26. //Move left

27.	 speed.x	=	-movementSpeed	*	Time.deltaTime;

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

56

Handling User Input

28. } else if(Input.GetKey(KeyCode.D)){

29. //Move right

30.	 speed.x	=	movementSpeed	*	Time.deltaTime;
31. } else {

32.	 speed.x	=	0;
33. }

34.

35. if(Input.GetKey(KeyCode.W)){

36. //Move forward

37.	 speed.z	=	movementSpeed	*	Time.deltaTime;
38. } else if(Input.GetKey(KeyCode.S)){

39. //Move backwards

40.	 speed.z	=	-movementSpeed	*	Time.deltaTime;
41. } else {

42.	 speed.z	=	0;
43. }

44.

45. //Read jump input

46. if(Input.GetKeyDown(KeyCode.Space)){

47. //Apply jump only if the player is on the ground

48.	 if(transform.position.y	==	2.0f){
49.	 		 speed.y	=	jumpSpeed;
50. }

51. }

52.

53. //Move the character

54. transform.Translate(speed);

55.

56. //Apply gravity to velocity

57. if(transform.position.y > 2.0f){

58.	 speed.y	=	speed.y	–	gravity	*	Time.deltaTime;
59. } else {

60.	 speed.y	=	0;
61.	 Vector3	newPosition	=	transform.position;
62.	 newPosition.y	=	2.0f;
63.	 transform.position	=	newPosition;
64. }

65.

66. }

67. }

Listing 10: Reading movement input for third person input

We have discussed all these functions in the previous two sections, specifically in Listing 6 in page 26,
and Listing 9 in page 40. Notice that this system is similar to the first person input system, except for
reading mouse input and moving and rotating the camera. Camera rotation is the responsibility of
ThirdPersonCamera script that we are going to attach to the camera. Listing 11 shows this script.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

57

Handling User Input

1. using UnityEngine;

2. using System.Collections;

3.

4. public class ThirdPersonCamera : MonoBehaviour {

5.

6. //Character rotation speed

7.	 public	float	horizontalSpeed	=	0.4f;
8.

9. //Camera vertical movement speed

10.	 public	float	verticalSpeed	=	5;
11.

12. //Minimum and maximum allowed values

13. //of the camera height

14.	 public	float	minCameraHeight	=	0.25f;
15.	 public	float	maxCameraHeight	=	15;
16.

17. //Zoom control variables

18.	 public	float	maxZoom	=	-10;
19.	 public	float	minZoom	=	-30;
20.	 public	float	zoomSpeed	=	3;
21.

22. //Should the camera move down when

23. //the mouse moves up?

24.	 public	bool	invertYMovement	=	true;
25.

26. //Mouse position in the previous frame,

27. //important to measure mouse displacement

28. private Vector3 lastMousePosition;

29.

30. //Reference to player game object

31. Transform playerBody;

32.

33. void Start () {

34.	 lastMousePosition	=	Input.mousePosition;
35. //Player must be the parent of the camera

36.	 playerBody	=	transform.parent;
37. }

38.

39. void Update () {

40.	 	Vector3	mouseDelta	=	Input.mousePosition	–	lastMousePosition;
41.

42. //Horizontal mouse displacement is interpreted

43. //as rotation on the character

44. playerBody.RotateAround(

45. Vector3.up, //Rotation axis

46. mouseDelta.x *

47. horizontalSpeed *

48. Time.deltaTime);//Angle

49.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

58

Handling User Input

50. //Vertical mouse displacement is interpreted

51. //as vertical movement of the camera

52.	 float	yDelta	=	0;
53. if(invertYMovement){

54. //Invert Y movement direction

55.	 yDelta	=	-mouseDelta.y	*	verticalSpeed	*	Time.deltaTime;
56. } else {

57. //Use same Y movement direction

58.	 yDelta	=	mouseDelta.y	*	verticalSpeed	*	Time.deltaTime;
59. }

60.

61. //Perform vertical movement of the camera

62. transform.Translate(0, yDelta, 0, Space.World);

63.

64. //Check if the Y position of the cam exceeds the allowed limits

65.	 Vector3	newCameraPos	=	transform.localPosition;
66. if(newCameraPos.y > maxCameraHeight){

67.	 newCameraPos.y	=	maxCameraHeight;
68. } else if(newCameraPos.y < minCameraHeight){

69.	 newCameraPos.y	=	minCameraHeight;
70. }

71.

72.	 //Position	the	camera	after	fixing	the	Y	position
73.	 transform.localPosition	=	newCameraPos;
74.

75. //Keep the camera looking at the character

76. transform.LookAt(playerBody);

77.

78. //Store the mouse position for the next frame

79.	 lastMousePosition	=	Input.mousePosition;
80.

81. //Apply zooming

82.	 float	wheel	=	Input.GetAxis("Mouse	ScrollWheel");
83. //Zoom in

84. if(wheel > 0 && transform.localPosition.z < maxZoom){

85. //Move the camera forward on its local Z axis

86. //using zoom speed

87. transform.Translate(0, 0, zoomSpeed);

88. } else //Zoom out

89. if(wheel < 0 && transform.localPosition.z > minZoom){

90. //Move the camera backwards on its local Z axis

91. //using the negative value of zoom speed

92. transform.Translate(0, 0, -zoomSpeed);

93. }

94. }

95. }

Listing 11: Camera script for the third person input system

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

59

Handling User Input

Even this script is attached to the camera, it affects the character as well. At the beginning we declare
a few variables that will help us to control the camera (lines 7 through 24). These variables control the
speed of the horizontal rotation of the character and the vertical movement of the camera, in addition
to the limits of vertical camera rotation and the limits of zooming in and out. Notice in lines 18 and
19 that the maximum and the minimum values of zooming are both negative values, since the camera
must always be behind the character. According to the left-hand rule we use, positive direction of the z
axis goes inside the screen.

In Start() function, specifically in line 36, we define the variable playerBody of type Transform. We are
going to use this variable to reference the character. The transform of the character can be accessed
through transform.parent, which returns the parent of the current game object. Remember that we attach
this script to the camera, which is a child of the character.

In lines 44 and 45 we convert the horizontal displacement of the mouse to a rotation of playerBody
around the y axis, in a way similar to what we have done in the first person system. In lines 52 through
62 we declare the variable yDelta to compute the vertical mouse displacement based on the value of
invertYMovement. The value of invertYMovement decides whether the displacement of the camera will
match the direction of the vertical mouse displacement or it will be in the opposite direction. After that
we perform the vertical movement of the camera in the world space, which takes place in line 62.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

60

Handling User Input

After moving the camera vertically, we check in lines 65 through 70 whether the new vertical position
of the camera is between the maximum and the minimum allowed values. These values are defined by
minCameraHeight and maxCameraHeight. Notice that we check the position using transform.localPosition
instead of transform.position. We do this in order to make the position test relative to the vertical position
of the player character rather than the ground. This will make our computations applicable in all cases,
including the cases where the vertical position of the character changes, such as jumping case. We store
the position of the camera in newCameraPosition, then we check whether the member y of the new
position is within the allowed limits. If a modification is necessary we perform it, and we finally store
newCameraPos back in transform.localPosition in line 73.

Once we are done moving the camera, we need to make sure that the camera looks always at the character.
So, in line 76, we call transform.LookAt() and pass to it playerBody, which refers to the character. In lines
81 through 93, we read the mouse wheel and interpret scroll up as zoom in and scroll down as zoom
out. Camera movement along its local z axis is controlled by zoomSpeed and the position of the camera.
This position after zooming must be between maxZoom and minZoom. Once again we use transform.
localPosition, since camera zooming is performed against the character, rather than the world center.
You can construct a simple scene to test this input system, and you can also see the final result in scene6
in the accompanying project.

Illustration 24: A simple scene to demonstrate the third person input system

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

61

Handling User Input

2.6 Implementing car racing games input system

Car racing input systems are similar to some extent to third person input systems, especially in terms of
the position of the camera. However, there are still few differences as we are going to see. Let’s begin with
an object that represents the car, and here I am going to use a cube with dimensions of (2, 1, 3.5). Let’s
also add a ground, which is a plane with a scale of (100, 1, 100). Remember that the default side length
of the plane is 10 units, so the total side length after scaling is going to be 100 * 10 = 1000 units. This is
equal to one square kilometer, since each unit equals one meter. I am going also to use an asphalt texture
for the ground, in addition to a directional light. Finally, we add two empty game objects as children
to the car object, and these are going to be used as axes for car rotation. First object is RotationAxisR,
which is located to the right of the car and has the local position (1, 0, 0), and the other is RotationAxisL,
which has the local position (-1, 0, 0). The scene we are going to use is shown in Illustration 25.

Illustration 25: A scene to demonstrate the car racing input system

The difference is that we are not going to add the camera as a child to the car like we have done with the
player character in the third person input system, and this is going to serve a nice effect as we are going
to see. Another difference is the way the car moves, which is not similar to the persons’ movement we
have seen so far. Car speed is not constant, but rather increases with time as long as the acceleration
pedal is pressed, and decreases when the pedal is released. Additionally, using the brakes makes the car
lose speed in a shorter time. Car rotation is also different from persons’ rotation. Persons simply revolve
around their selves, but cars need some area to turn within. Therefore, we can imagine two virtual axes
to the right and the left of the car at some distance away from the center of the car body. This distance
decreases as we steer more, so we can control the turning angle of the car. For the sake of simplicity,
and because we deal only with digital input (keyboard) rather than analog input, I am going to use a
fixed distance for the rotation axes.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

62

Handling User Input

Let’s now write the script that will turn this static cube into a drivable car (behaviorally, not visually
for sure!). So we can increase or decrease the speed, as well as turning right or left. Listing 12 shows
CarController script we are going to use.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class CarController : MonoBehaviour {

5.

6. //Max car speed in Km/h

7.	 public	float	maxSpeed	=	200;
8.

9. //Increment in speed in Km/h

10.	 public	float	acceleration	=	20;
11.

12. //Decrement of speed in Km/h

13.	 public	float	deceleration	=	16;
14.

15. //Decrement of speed in Km/h when braking

16.	 public	float	braking	=	60;
17.

18. //Decrement of speed in Km/h when turning right or left

19.	 public	float	turnDeceleration	=	30;
20.

21. //Rotation speed when steering in degree/sec.

22.	 public	float	steeringSpeed	=	70;

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

63

Handling User Input

23.

24. //Rotation axis on right and left

25. Transform rightAxis, leftAxis;

26.

27. //Current car speed in m/s

28.	 float	currentSpeed	=	0;
29.

30. //Multiply by this value to convert from

31. // Km/h to m/s

32.	 const	float	CONVERSION_FACTOR	=	0.2778f;
33.

34. void Start () {

35. //Find right and left rotation axes in children

36.	 rightAxis	=	transform.FindChild("RotationAxisR");
37.	 leftAxis	=	transform.FindChild("RotationAxisL");
38. }

39.

40. void Update () {

41.

42. if(Input.GetKey(KeyCode.UpArrow)){

43. //Acceleration pressed

44. //Increase the speed by acceleration amount

45. AdjustSpeed(

46.	 		 	acceleration	*	CONVERSION_FACTOR	*	Time.deltaTime);
47. } else {

48. //Acceleration released

49. //Decrease the speed by deceleration

50. AdjustSpeed(

51.	 		 	-deceleration	*	CONVERSION_FACTOR	*	Time.deltaTime);
52. }

53.

54. if(Input.GetKey(KeyCode.DownArrow)){

55. //Braking pressed

56. //Decrease the speed by braking amount

57. AdjustSpeed(

58.	 		 	-braking	*	CONVERSION_FACTOR	*	Time.deltaTime);
59. }

60.

61. //Turning right: no rotation if the current speed is < 5 Km/h

62. if(Input.GetKey(KeyCode.RightArrow) &&

63.	 currentSpeed	>	5	*	CONVERSION_FACTOR){
64. AdjustSteering(steeringSpeed, rightAxis.position);

65. }

66.

67. //Turning left: no rotation if the current speed is < 5 Km/h

68. if(Input.GetKey(KeyCode.LeftArrow) &&

69.	 currentSpeed	>	5	*	CONVERSION_FACTOR){
70. AdjustSteering(-steeringSpeed, leftAxis.position);

71. }

72.

73. //Perform movement on the local Z axis using current speed

74. transform.Translate(0, 0, currentSpeed * Time.deltaTime);

75.

76. }

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

64

Handling User Input

77.

78. //Adds a new value to the current speed

79. //Checks max and min limits

80. //The new value must be in m/s

81.	 void	AdjustSpeed(float	newValue){
82.	 currentSpeed	+=	newValue;
83.	 if(currentSpeed	>	maxSpeed	*	CONVERSION_FACTOR){
84.	 currentSpeed	=	maxSpeed	*	CONVERSION_FACTOR;
85. }

86.

87. if(currentSpeed < 0){

88.	 currentSpeed	=	0;
89. }

90. }

91.

92. //Rotates the car horizontally around the provided point

93. //using the provided rotation speed in degree / second

94.	 void	AdjustSteering(float	speed,	Vector3	rotationAxis){
95. //Rotate using the provided axis and steering speed

96. transform.RotateAround(

97. rotationAxis, Vector3.up, speed * Time.deltaTime);

98. //If the current speed is > 30 Km/h,

99. //reduce it by the amount of turn deceleration

100.	 if(currentSpeed	>	30	*	CONVERSION_FACTOR){
101. AdjustSpeed(

102.	 		 -turnDeceleration	*	CONVERSION_FACTOR	*
103. Time.deltaTime);

104. }

105. }

106. }

Listing 12: Car control script

In lines 6 through 19 we declare few variables related to the car speed, including max speed of the car
maxSpeed, increment of the speed with the time acceleration, decrement of the speed with the time
deceleration, decrement of the speed with the brakes braking, and decrement of the speed when the
car turns right or left turnDeceleration. All these values are in km/h, which makes it easy for us to deal
with them.

In line 22 we declare steeringSpeed, which is expressed in degrees per second. The variables leftAxis
and rightAxis declared in line 25 are going to be used as references to the objects RotationAxisR and
RotationAxisL which we have added as children to the car. We are going to use these objects as rotation
axes when the car turns, since the car does not simply revolve around itself, but it needs some space to
turn in. This space is determined by using these two axes: the farther a rotation axis is, the larger the
resulting turning area is going to be.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

65

Handling User Input

The variable declared in line 28 stores the current speed of the car after applying acceleration, braking,
and steering values that come from the player input. Notice that this speed variable, unlike the previous
ones, is expressed in m/s rather than km/h. This is because the time unit used in Unity is the second,
and the distance unit is the meter, which makes dealing with these units easier than the kilometer
and the hour. To convert from km/h to m/s, we use the constant CONVERSION_FACTOR declared
in line 32, which has a constant value of 0.2778. So all we have to do is to multiply any km/h value
by CONVERSION_FACTOR to convert it to m/s. After that, in Start() function, we find the objects
RotationAxisR and RotationAxisL and reference them using rightAxis and leftAxis consequtively, in order
to use them when implementing car turning.

Before getting into the details of Update() function, I want to jump to lines 81 through 90, in which we
declare a custom function called AdjustSpeed(). If you are unfamiliar with programming, we can simply say
that declaring functions is useful when you need to repeat the same task several times in different places, and
this task takes a number of lines to program, which makes writing it over an over tedious and more error
prone. And this is the case when adjusting the speed of the car: we need first to add the new value to the
current speed, then check whether the result exceeds the maximum speed, in that case we set the current
speed to the value of maximum speed. We need also to check whether the result is less than zero, and set
the current speed to zero in that case. So what we need to do is to call this function whenever we want to
change the speed of our car, and provide it with newValue that we want add or subtract from the current
speed. Before adding it, newValue need to be converted to m/s, which is the unit used by AdjustSpeed().

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

66

Handling User Input

We have another custom function in the lines 94 through 105, which is AdjustSteering(). We are going
to use this function to implement turning right and left. When we call this function, we must provide
it with a turn speed and a turn axis. AdjustSteering() rotates the car around rotationAxis using the value
of speed variable. After that it checks the current speed of the car. If the current speed is greater than 30
km/h, it is reduced by turnDeceleration. Notice that AdjustSteering() calls AdjustSpeed() in order to apply
deceleration. This is perfectly legal in programming languages; to have a function call another function.

Back to Update() function, and specifically to lines 42 through 52, where we check the state of the
up arrow, and increment the current car speed by the value of acceleration if the player is holding
this arrow. Notice that we change the speed by calling AdjustSpeed() function and providing it with
acceleration multiplied by CONVERSION_FACTOR to convert km/h to m/s. Calling AdjustSpeed()
without performing this conversion of units will result in a wrong value. If the player is not pressing up
arrow key, we decrease the speed with the negative value of deceleration. We use the negative value here
in order to have AdjustSpeed() subtract deceleration value from the current speed. In lines 54 through
59 we check the state of the down arrow, and activate the brakes if the player is pressing it. Activating
the breaks means decreasing the speed with the value of braking. This means that the car will need less
time to stop completely when the brakes are active.

Turning is performed in lines 62 through 71, were we check the state of the right arrow as well as the
current car speed. We do not turn the car if its current speed is less than 5 km/h, since steering must
not be able to move the car if it is completely stopped. Notice in line 64 that we use rightAxis as the
rotation axis, along with the positive value of steeringSpeed. This is because turning right needs a positive
(clockwise) rotation around the vertical axis (line 97). On the other hand, in line 70, we use the negative
value of steeringSpeed, to achieve a counter-clockwise rotation around leftAxis.

After computing the speed of the car and performing the necessary rotation for turning, we need to
move the car forward along its positive z axis. We use currentSpeed multiplied by the time. Remember
that currentSpeed is expressed in m/s, so it is safe to multiply it directly by Time.deltaTime as in line 74.
You can now test your car control script since it is ready, then you can move to the next step, which is
writing the camera script.

The camera in car racing games follows the car at a specific distance behind it, and it has also a specific
height above the vertical position of the car. Additionally the rotation of the camera after the car turns
is not immediate, but rather has some latency, and has a speed less than the turn speed of the car. So if
the car turns for long time, a part of its side will become visible to the player as in Illustration 26. This
script we are going to add to the camera is CarCamera in Listing 13.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

67

Handling User Input

Illustration 26: Car rotation in front of the camera during turning, and the apparition of car side

1. using UnityEngine;

2. using System.Collections;

3.

4. public class CarCamera : MonoBehaviour {

5.

6. //Reference to the car object

7. public Transform car;

8.

9. //Camera height above the Y position of the car

10.	 public	float	height	=	4;
11.

12. //distance between the car and the camera

13. //regardless of the height of the camera

14.	 public	float	zDistance	=	10;
15.

16. //Seconds to wait before turning

17. //the camera after the car turns

18.	 public	float	turnTimeout	=	0.25f;
19.

20. //Speed of camera rotation

21. //in degrees / sec.

22.	 public	float	turnSpeed	=	50;
23.

24. //Time passed since the angle between the camera

25. //and the car changed to a large value

26.	 float	angleChangeTime	=	-1;
27.

28. void Start () {

29. //Set position and rotation of the camera

30. //to the same values of the car

31.	 transform.position	=	car.position;
32.	 transform.rotation	=	car.rotation;
33. }

34.

35. //We use late update to make sure that the car

36. //moves before the camera

37. void LateUpdate () {

38. //We start by positioning the camera

39. //at the same position of the car

40.	 transform.position	=	car.position;
41.

42.	 //Now	move	the	camera	backwards	on	its	local
43.	 //Z	axis	by	the	defined	distance
44.	 //and	up	by	the	defined	height
45. transform.Translate(0, height, -zDistance);

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

68

Handling User Input

46.

47. //Measure the angle between the camera and the car front

48.	 	float	angle	=	Vector3.Angle(car.forward,	transform.forward);
49.

50. //Check if the angle is greater than the dead zone

51. //The value of angle is always positive, regardless

52. //of turn direction of the car

53. if(angle > 1){

54. //The difference is large

55. //Check if it is time to start rotating the camera

56.	 if(angleChangeTime	==	-1){
57.	 		 angleChangeTime	=	0;
58. }

59.

60. //Add the delta time to

61. //the total angle change time

62.	 angleChangeTime	+=	Time.deltaTime;
63.

64. if(angleChangeTime > turnTimeout){

65. //It is time to start rotating the camera

66. //Perform a vector cross multiplication between

67. //the forward vectors of the camera and the car

68.	 		 float	resultDirection	=
69. Vector3.Cross(car.forward,

70. transform.forward).y;

71.

72. //The sign of the y value in the resulting vector

73. //determines the sign of rotation direction

74.	 		 float	rotationDirection;
75. if(resultDirection > 0){

76.	 		 rotationDirection	=	-1;
77. } else {

78.	 		 rotationDirection	=	1;
79. }

80.

81. //now rotate the camera around the car in

82. //the rotation direction using turn speed

83. transform.RotateAround(car.position,

84. Vector3.up,

85. rotationDirection * turnSpeed * Time.deltaTime);

86. }

87. } else {

88. //The difference is small,

89. //reset the angle change time

90.	 angleChangeTime	=	-1;
91. }

92. }

93. }

Listing 13: Camera script for the car racing input system

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

69

Handling User Input

First of all remember that we are dealing with a camera that is independent of the car object, unlike
third person camera, which was a child of the player character. Therefore we declare the variable car,
in order to reference the car object, just like we have done in platformer input system (see Illustration
19 in page 31). Additionally, we have height, which is the vertical distance between the y position of the
car and the y position of the camera. Finally, we have zDistance, which tells us how many meters there
are between the car and the camera.

To control camera rotation we declare turnTimeout, which is the time the camera waits after the car turns,
and before the camera starts to rotate behind it. As for turnSpeed, we are going to use it to determine
the speed of camera rotation. Finally, we have angleChangeTime, which stores the time which the angle
between the front vector of the car and the look direction of the camera becomes more than one degree.
We need to store this time in order to compute the time passed since the angle change, and hence start
to rotate the camera when this time exceeds turnTimeout. This is going to be discussed in detail shortly.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

70

Handling User Input

The first step in Start() function is to make sure that the camera is at the same position of the car, and
is looking to the same direction of the front vector of the car. Therefore we copy the values from the
position and the rotation of the car to the position and the rotation of the camera. It is a good time now
to briefly discuss the programmatic concept of copying the value and copying the reference. In case of
copying the value, like our case in Start() function, the variables involved remain independent of each
other after copying is completed. This means that any future change on car.position or car.rotation is not
going to affect the camera, which is not the case when copying by reference. However, I am not going
to discuss reference copy unless it is the appropriate time to do so.

Notice that in line 37 we use LateUpdate() instead of Update(), in order to make sure that Unity executes
the logic of CarController first and updates the position of the car before executing CarCamera, which
makes the camera follow it (you can go back to page 30 for more on LateUpdate()). In lines 40 and 45,
we position the camera in its correct place relative to the car. We perform this through two steps: firstly
we position the camera at the same position of the car (line 40), then we use transform.Translate() to
move it backwards and upwards using zDistance and height. We use the negative value of zDistance to
have the camera move backwards and be behind the car, based on the left hand rule as always.

After updating the position of the camera, it is time to update the rotation. The first step is to get the
angle between the car front direction car.forward, and the direction at which the camera is looking
transform.forward. The forward vector of any object points to the positive direction of the local z axis of
that object. We perform angle measurement in line 48, and store the angle value in angle variable. It is
important to mention here that Vector3.Angle() measures the angle between the two given vectors, and
returns the minimum possible angle between them. The returned angle is always positive, regardless of
the order in which vectors are passed to the function.

All following steps in lines 53 through 85 are related to camera rotation after the car turns. These steps
depend on having an angle between the car front and the direction of the camera, which is greater than
one degree. This condition is checked in line 53 before moving to the next steps. These steps begin by
testing the value of angleChangeTime, and reset it to zero if its is equal to -1 (lines 56 through 58). After
that, in line 62, we accumulate the time passed since last frame to the value of angleChangeTime. In line
64 we check whether the time passed since the change in the angle exceeds waiting time specified by
turnTimeout. If this is true, we begin to rotate the camera.

As we have learned before, we need three pieces of information to rotate the camera: a rotation axis, a
rotation direction (clockwise or counter-clockwise), and a rotation speed. The rotation axis is the vertical
axis located at the same position of the car, since we are going to rotate the camera around the car object.
The speed of the rotation is already defined by turnSpeed, so what is left now is determining the rotation
direction. This direction depends on whether the car has turned left or right. When the car turns right,
we rotate the camera clockwise, and when the car turns left, we rotate the camera counter-clockwise.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

71

Handling User Input

To find the direction of the rotation, we use the vector cross product in the lines 68 through 70. The
benefit we get from using cross product is the direction of the resulting vector, which is going to be
important to us. This vector is perpendicular to the two vectors involved in the cross product operation.
Since the camera direction and the car front are both horizontal, the resulting vector is vertical, and it
points either up or down. The direction is determined by the smallest angle between the two vectors
involved in the cross product. To illustrate, let’s take the example in Illustration 27, which shows the
case in which the car turns right.

Illustration 27: Angle difference between the car front (a) and the camera direction (b)

In Illustration 27, the camera looks forward while the car front is a bit rotated to the right. To get the
rotation direction, we need to apply left-hand rule on the cross product between these two vectors. This
rule is different from the right-hand rule of cross product you might have learned in mathematics or physics
class. So, according to this rule, the fastest way to let the first vector in the operation (car front) point to the
direction of the second vector (camera front) is to rotate it counter-clockwise. It is clear in Illustration 27
that we need to rotate vector a counter clockwise to match the direction of vector b. This counter-clockwise
rotation results in a vector that points downwards, hence has a negative value of y. This value is stored in
resultDirection variable to be used later for determining the direction of camera rotation.

In lines 74 through 79, we determine the direction of camera rotation based on the value of resultDirection.
If resultDirection is negative, left-hand rule tells us that rotation direction must be counter-clockwise,
hence negative. Remember, however, that the front vector of the car is what we must rotate counter-
clockwise, but we have no control over the car in this script. Therefore, a counter-clockwise rotation of the
car can be substituted by a clockwise rotation of the camera. For that reason, you see that rotationDirection
always has the opposite sign of resultDirection. Finally, we perform the rotation in lines 83 through 85
based on our computations. The final result can be seen in scene7 in the accompanying project.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

72

Handling User Input

2.7 Implementing flight simulation input system

Last input system I am going to discuss in this chapter is the flight simulation input system. Surely, we are
not going to implement a simulation of an airplane cockpit like what you might have seen in Microsoft
Flight Simulator, but it is rather a simple system like the one you might have seen in some GTA series
games. We are going to implement a flight jet with wings, not a helicopter.

This type of input systems is relatively simple to program, since it depends completely on rotations.
Nevertheless, it might be hard to control for the players who are not used to this type of games. In this
section I am going to cover a single state, which is the continuous flying of the plane. This means that
taking off and landing are not going to be covered. Additionally, we are going to assume a constant flying
speed that cannot be changed by the player. So let’s at the beginning make a simple plane model like
the one in Illustration 28 using cubes with varied sizes. These cubes are added as children to the plane
body, so the plane can move as one unit.

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

73

Handling User Input

Illustration 28: A simple plane model built using cubes

Let’s now describe how the plane can be controlled. We let the plane fly forward automatically, and the
player must not be able to stop it. This makes sense because the pilot can never stop the plane in the
air. What the player can do is to rotate the plane around its local z axis using right and left arrows, in
a movement known as roll. Another rotation the player can do is around the local x axis of the plane
using up and down arrows, and this movement is known as pitch.

When the player presses down arrow, the front side of the plane raises, so the altitude of the plane
increases as it moves. The opposite happens when the player presses up arrow, where the front side of
the plane gets lower and the altitude decreases with the time. Right and left arrows do not affect the
altitude or the direction of the plane, but they make it roll to the right or the left. So when the plane roll
to the right and then raise its front, it is going eventually turn to right. This type of control needs some
time to get used to if the player has no experience with it.

As for camera, we simply add it as a child to the plane and make it a little bit higher than it. Obviously,
the camera is going to be behind the plane, so it gives a view similar to what you see in Illustration 29.
It is a good idea to extend the far clipping plane of the camera to 5000 instead of 1000, because flight
games depend on long view distances. This is a result of the nature of the planes, as they fly at high
speed on high altitudes. The final step is to add FlyController script to the plane in order to control it.
This script is shown in Listing 14.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

74

Handling User Input

Illustration 29: The plane as seen by the camera during play

1. using UnityEngine;

2. using System.Collections;

3.

4. public class FlyController : MonoBehaviour {

5.

6.	 //forward	flying	speed	in	m	/	s
7.	 public	float	flySpeed	=	166;
8.

9. //Speed of the rotation around local z axis

10.	 public	float	rollSpeed	=	35;
11.

12. //Speed of the rotation around local x axis

13.	 public	float	pitchSpeed	=	35;
14.

15. void Start () {

16.

17. }

18.

19. void Update () {

20. //rotation values for this frame

21.	 float	roll,	pitch;
22.

23. //Compute the rotation around z axis based on

24. //right and left arrow keys

25. if(Input.GetKey(KeyCode.RightArrow)){

26.	 roll	=	-rollSpeed	*	Time.deltaTime;
27. } else if(Input.GetKey(KeyCode.LeftArrow)){

28.	 roll	=	rollSpeed	*	Time.deltaTime;
29. } else {

30.	 roll	=	0;

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

75

Handling User Input

31. }

32.

33. //Compute the rotation around x axis based on

34. //up and down arrow keys

35. if(Input.GetKey(KeyCode.DownArrow)){

36.	 pitch	=	-pitchSpeed	*	Time.deltaTime;
37. } else if(Input.GetKey(KeyCode.UpArrow)){

38.	 pitch	=	pitchSpeed	*	Time.deltaTime;
39. } else {

40.	 pitch	=	0;
41. }

42.

43. //Perform rotations around local

44. // z and local x axes

45. transform.Rotate(0, 0, roll);

46. transform.Rotate(pitch, 0, 0);

47.

48.	 //Move	the	plane	forward	based	on	flying	speed
49.	 transform.Translate(0,	0,	flySpeed	*	Time.deltaTime);
50.

51. //Do not allow the plane to sink below 5 meters

52.	 Vector3	pos	=	transform.position;
53. if(pos.y < 5){

54.	 pos.y	=	5;
55. }

56.	 transform.position	=	pos;
57. }

58. }

Listing 14: The plane control system

As you can see the code is fairly simple and involves techniques we have already discussed. You can see
the final result in scene8 in the accompanying project.

This concludes this chapter about reading user input. We have learned how to read keyboard and
mouse input and convert this input to meaningful actions that allow the player to interact with the
game environment. Unity allows us to read input from wide range of input devices, such as game pads,
joysticks, touch screens, steering wheels and others. Even it is not possible to cover all of them in this
chapter, the basic idea is similar: you read the state of keys and buttons as well as the displacement of
the fingers on a touch screen and interpret them to some actions in the game.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

76

Handling User Input

Exercises

1. In Listing 6 in page 26, we implemented a platformer input system. Some games of this type allow
the player to increase the speed of character using a special key. Declare a new variable and call it
runSpeed, and give it a value greater than normal speed if the character. After that add code that
scans left shift key (use KeyCode.LeftShift). If the player is holding left shift, then use runSpeed
for movement to make character move faster, or use default speed if the player is not pressing
shift. You may apply running on other input systems as well if you wish.

2. When we implement person movement systems such as platformer, first person, and third
person systems, we did not take into account acceleration and deceleration of the movement.
Try to make use of acceleration/deceleration mechanism we implemented in Listing 12 in page
50 to enhance movement in these systems. For example, you can prevent sudden stop of the
character during jumping, since it must be driven towards jump direction until it land on the
ground again. You can implement this mechanism in any way you see appropriate.

3. Try to use car camera script in Listing 13 in page 54 with third person input system instead
of adding the camera as child to the player character. What changes you need to do to let the
player control the character easily using new camera system?

4. Modify plane control script in Listing 14 in page 59 so that plane return to its original rotation
when the player releases control keys. You have to do computations similar to those in car
camera, since you need to find the amount and direction of the rotation and when to stop
rotating. Apply this to rotations on both x and z axes.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

